
5. Neural Network
LING-581-Natural Language Processing 1

Instructor: Hakyung Sung
September 9, 2025
*Acknowledgment: These course slides are based on materials from CS224N @ Stanford University; Dr. Kilho Shin @ Kyocera



Table of contents

1. GloVe

2. Artificial neural network

3. Perceptron

4. Multi-layer perceptron

5. Gradient descendant and loss function

6. Backpropagation

1



Review



Word vectors

• One-hot encoding (Bag-of-words representation)

• Count-based model
• Neural network-based model

• Word2Vec
• GloVe

• Evaluation (External, Internal)
• Word meanings can be represented well by a high-dimensional
vector of real numbers

• Linguistic idea: A word’s meaning is given by the words that
frequently appear close-by

2



Word vectors

• One-hot encoding (Bag-of-words representation)
• Count-based model

• Neural network-based model

• Word2Vec
• GloVe

• Evaluation (External, Internal)
• Word meanings can be represented well by a high-dimensional
vector of real numbers

• Linguistic idea: A word’s meaning is given by the words that
frequently appear close-by

2



Word vectors

• One-hot encoding (Bag-of-words representation)
• Count-based model
• Neural network-based model

• Word2Vec
• GloVe

• Evaluation (External, Internal)
• Word meanings can be represented well by a high-dimensional
vector of real numbers

• Linguistic idea: A word’s meaning is given by the words that
frequently appear close-by

2



Word vectors

• One-hot encoding (Bag-of-words representation)
• Count-based model
• Neural network-based model

• Word2Vec

• GloVe

• Evaluation (External, Internal)
• Word meanings can be represented well by a high-dimensional
vector of real numbers

• Linguistic idea: A word’s meaning is given by the words that
frequently appear close-by

2



Word vectors

• One-hot encoding (Bag-of-words representation)
• Count-based model
• Neural network-based model

• Word2Vec
• GloVe

• Evaluation (External, Internal)
• Word meanings can be represented well by a high-dimensional
vector of real numbers

• Linguistic idea: A word’s meaning is given by the words that
frequently appear close-by

2



Word vectors

• One-hot encoding (Bag-of-words representation)
• Count-based model
• Neural network-based model

• Word2Vec
• GloVe

• Evaluation (External, Internal)

• Word meanings can be represented well by a high-dimensional
vector of real numbers

• Linguistic idea: A word’s meaning is given by the words that
frequently appear close-by

2



Word vectors

• One-hot encoding (Bag-of-words representation)
• Count-based model
• Neural network-based model

• Word2Vec
• GloVe

• Evaluation (External, Internal)
• Word meanings can be represented well by a high-dimensional
vector of real numbers

• Linguistic idea: A word’s meaning is given by the words that
frequently appear close-by

2



Word vectors

• One-hot encoding (Bag-of-words representation)
• Count-based model
• Neural network-based model

• Word2Vec
• GloVe

• Evaluation (External, Internal)
• Word meanings can be represented well by a high-dimensional
vector of real numbers

• Linguistic idea: A word’s meaning is given by the words that
frequently appear close-by

2



Distributional semantics

• “You shall know a word by the company it keeps” (Firth, 1957) -
One of the most successful ideas of modern statistical NLP.

3



Lesson plan



Lesson plan

• Review

• GloVe (5 mins)
• Artificial neural network (10 mins)
• Perceptrons (10 mins)
• Multi-layer perceptrons (10 mins)
• Gradient descendant and loss function (10 mins)
• Backpropagation (15 mins)

Key idea: Modern NLP systems are built on deep learning; deep
learning algorithm is not magic.

4



Lesson plan

• Review
• GloVe (5 mins)

• Artificial neural network (10 mins)
• Perceptrons (10 mins)
• Multi-layer perceptrons (10 mins)
• Gradient descendant and loss function (10 mins)
• Backpropagation (15 mins)

Key idea: Modern NLP systems are built on deep learning; deep
learning algorithm is not magic.

4



Lesson plan

• Review
• GloVe (5 mins)
• Artificial neural network (10 mins)

• Perceptrons (10 mins)
• Multi-layer perceptrons (10 mins)
• Gradient descendant and loss function (10 mins)
• Backpropagation (15 mins)

Key idea: Modern NLP systems are built on deep learning; deep
learning algorithm is not magic.

4



Lesson plan

• Review
• GloVe (5 mins)
• Artificial neural network (10 mins)
• Perceptrons (10 mins)

• Multi-layer perceptrons (10 mins)
• Gradient descendant and loss function (10 mins)
• Backpropagation (15 mins)

Key idea: Modern NLP systems are built on deep learning; deep
learning algorithm is not magic.

4



Lesson plan

• Review
• GloVe (5 mins)
• Artificial neural network (10 mins)
• Perceptrons (10 mins)
• Multi-layer perceptrons (10 mins)

• Gradient descendant and loss function (10 mins)
• Backpropagation (15 mins)

Key idea: Modern NLP systems are built on deep learning; deep
learning algorithm is not magic.

4



Lesson plan

• Review
• GloVe (5 mins)
• Artificial neural network (10 mins)
• Perceptrons (10 mins)
• Multi-layer perceptrons (10 mins)
• Gradient descendant and loss function (10 mins)

• Backpropagation (15 mins)

Key idea: Modern NLP systems are built on deep learning; deep
learning algorithm is not magic.

4



Lesson plan

• Review
• GloVe (5 mins)
• Artificial neural network (10 mins)
• Perceptrons (10 mins)
• Multi-layer perceptrons (10 mins)
• Gradient descendant and loss function (10 mins)
• Backpropagation (15 mins)

Key idea: Modern NLP systems are built on deep learning; deep
learning algorithm is not magic.

4



GloVe



Revisit: Count-based & Neural-based models

• Count-based
• Fast training
• Efficient usage of statistics
• Primarily used to capture word similarity

• Neural-based
• Scales with corpus size
• Inefficient usage of statistics (e.g., random sampling)

5



Motivation: Encoding meaning via co-occurrence ratios

• Idea: Meaning differences between words can be reflected in the
ratios of their co-occurrence probabilities with other words.

• GloVe leverages these ratios to learn word vectors where vector
differences encode semantic components.

6



Motivation: Encoding meaning via co-occurrence ratios

Example: ice vs. steam

• 𝑥 = a context word (e.g., solid, gas, water, random)
• Compare 𝑃(𝑥 ∣ ice) and 𝑃(𝑥 ∣ steam)

x = solid x = gas x = water x = random
𝑃(𝑥 ∣ ice) large small large small

𝑃(𝑥 ∣ steam) small large large small
𝑃(𝑥∣ice)

𝑃(𝑥∣steam) large small ≈ 1 ≈ 1

Interpretation?

• “solid” with “ice”, “gas” with ”steam” → strong contrast

• For neutral words (e.g., “water”, “random”), both words co-occur
similarly → ratio ≈ 1

• These ratio patterns can encode semantic differences.

7



Motivation: Encoding meaning via co-occurrence ratios

Example: ice vs. steam

• 𝑥 = a context word (e.g., solid, gas, water, random)
• Compare 𝑃(𝑥 ∣ ice) and 𝑃(𝑥 ∣ steam)

x = solid x = gas x = water x = random
𝑃(𝑥 ∣ ice) large small large small

𝑃(𝑥 ∣ steam) small large large small
𝑃(𝑥∣ice)

𝑃(𝑥∣steam) large small ≈ 1 ≈ 1

Interpretation?

• “solid” with “ice”, “gas” with ”steam” → strong contrast
• For neutral words (e.g., “water”, “random”), both words co-occur
similarly → ratio ≈ 1

• These ratio patterns can encode semantic differences.

7



Motivation: Encoding meaning via co-occurrence ratios

Example: ice vs. steam

• 𝑥 = a context word (e.g., solid, gas, water, random)
• Compare 𝑃(𝑥 ∣ ice) and 𝑃(𝑥 ∣ steam)

x = solid x = gas x = water x = random
𝑃(𝑥 ∣ ice) large small large small

𝑃(𝑥 ∣ steam) small large large small
𝑃(𝑥∣ice)

𝑃(𝑥∣steam) large small ≈ 1 ≈ 1

Interpretation?

• “solid” with “ice”, “gas” with ”steam” → strong contrast
• For neutral words (e.g., “water”, “random”), both words co-occur
similarly → ratio ≈ 1

• These ratio patterns can encode semantic differences.

7



GloVe’s goal:

Find word vectors 𝑤⃗ice, 𝑤⃗steam such that:

(𝑤⃗ice − 𝑤⃗steam) ⋅ 𝑤⃗𝑥 ≈ log 𝑃(𝑥 ∣ ice)
𝑃 (𝑥 ∣ steam)

How can we capture ratios of co-occurrence probabilities as linear
meaning components in a word vector space?

Represent word meaning differences with vector differences:

𝑤⃗𝑥 ⋅ (𝑤⃗𝑎 − 𝑤⃗𝑏) = log 𝑃(𝑥 ∣ 𝑎)
𝑃 (𝑥 ∣ 𝑏)

• Example: 𝑥 = solid → appears much more often with “ice” than
with “steam” ⇒ inner product is positive

• Example: 𝑥 = gas → appears more often with “steam” than with
“ice” ⇒ inner product is negative

• Meaning difference (ice vs steam) is captured as a vector
difference, and other words (𝑥) can be placed accordingly.

8



GloVe’s goal:

Find word vectors 𝑤⃗ice, 𝑤⃗steam such that:

(𝑤⃗ice − 𝑤⃗steam) ⋅ 𝑤⃗𝑥 ≈ log 𝑃(𝑥 ∣ ice)
𝑃 (𝑥 ∣ steam)

How can we capture ratios of co-occurrence probabilities as linear
meaning components in a word vector space?

Represent word meaning differences with vector differences:

𝑤⃗𝑥 ⋅ (𝑤⃗𝑎 − 𝑤⃗𝑏) = log 𝑃(𝑥 ∣ 𝑎)
𝑃 (𝑥 ∣ 𝑏)

• Example: 𝑥 = solid → appears much more often with “ice” than
with “steam” ⇒ inner product is positive

• Example: 𝑥 = gas → appears more often with “steam” than with
“ice” ⇒ inner product is negative

• Meaning difference (ice vs steam) is captured as a vector
difference, and other words (𝑥) can be placed accordingly.

8



GloVe’s goal:

Find word vectors 𝑤⃗ice, 𝑤⃗steam such that:

(𝑤⃗ice − 𝑤⃗steam) ⋅ 𝑤⃗𝑥 ≈ log 𝑃(𝑥 ∣ ice)
𝑃 (𝑥 ∣ steam)

How can we capture ratios of co-occurrence probabilities as linear
meaning components in a word vector space?

Represent word meaning differences with vector differences:

𝑤⃗𝑥 ⋅ (𝑤⃗𝑎 − 𝑤⃗𝑏) = log 𝑃(𝑥 ∣ 𝑎)
𝑃 (𝑥 ∣ 𝑏)

• Example: 𝑥 = solid → appears much more often with “ice” than
with “steam” ⇒ inner product is positive

• Example: 𝑥 = gas → appears more often with “steam” than with
“ice” ⇒ inner product is negative

• Meaning difference (ice vs steam) is captured as a vector
difference, and other words (𝑥) can be placed accordingly.

8



GloVe’s goal:

Find word vectors 𝑤⃗ice, 𝑤⃗steam such that:

(𝑤⃗ice − 𝑤⃗steam) ⋅ 𝑤⃗𝑥 ≈ log 𝑃(𝑥 ∣ ice)
𝑃 (𝑥 ∣ steam)

How can we capture ratios of co-occurrence probabilities as linear
meaning components in a word vector space?

Represent word meaning differences with vector differences:

𝑤⃗𝑥 ⋅ (𝑤⃗𝑎 − 𝑤⃗𝑏) = log 𝑃(𝑥 ∣ 𝑎)
𝑃 (𝑥 ∣ 𝑏)

• Example: 𝑥 = solid → appears much more often with “ice” than
with “steam” ⇒ inner product is positive

• Example: 𝑥 = gas → appears more often with “steam” than with
“ice” ⇒ inner product is negative

• Meaning difference (ice vs steam) is captured as a vector
difference, and other words (𝑥) can be placed accordingly. 8



More on GloVe

Loss Function:

𝐽 =
𝑉

∑
𝑖,𝑗=1

𝑓(𝑋𝑖𝑗) (𝑤⃗⊤
𝑖

⃗𝑤̃𝑗 + 𝑏𝑖 + ̃𝑏𝑗 − log 𝑋𝑖𝑗)
2

• 𝑋𝑖𝑗: Co-occurrence count of word 𝑖 with context word 𝑗
• 𝑓(𝑋𝑖𝑗): Weighting function to discount rare and overly frequent
co-occurrences

• 𝑏𝑖, ̃𝑏𝑗: Bias terms for words and contexts

9



More on GloVe

Interpretation (Regression view):

• Target: log 𝑋𝑖𝑗

• Prediction: 𝑤⃗⊤
𝑖

⃗𝑤̃𝑗 + 𝑏𝑖 + 𝑏̃𝑗

• Error: squared difference between prediction and target
• Weighting: 𝑓(𝑋𝑖𝑗) adjusts importance (rare vs. frequent pairs)

⇒ GloVe solves a weighted least squares regression problem, where
word–context vectors approximate the log co-occurrence counts.

10



More on GloVe: Advantages

• Fast training

• Scales well to large corpora
• Good performance even with small corpus / small vector size

Figure 1: Pennington et al. (2014)

11



More on GloVe: Advantages

• Fast training
• Scales well to large corpora

• Good performance even with small corpus / small vector size

Figure 1: Pennington et al. (2014)

11



More on GloVe: Advantages

• Fast training
• Scales well to large corpora
• Good performance even with small corpus / small vector size

Figure 1: Pennington et al. (2014)

11



Artificial neural network



Artificial neural network

Creating machines that can think and communicate like humans has
been a long-standing dream of humanity.

12



Artificial neural network

Today, artificial intelligence is largely based on machine learning,
especially deep learning technologies.

13



Artificial neural network

At the foundation of deep learning lies the artificial neural network,
which serves as the starting point for understanding deep learning.

NLP: neural networks involve in word embeddings, recurrent neural
networks, Transformer models

14



Understanding human brain

Artificial neural networks are computer programs designed to mimic
the human brain.

Therefore, understanding how the human brain works is the very first step.

15



Understanding human brain

Artificial neural networks are computer programs designed to mimic
the human brain.

Therefore, understanding how the human brain works is the very first step.

15



Neuron and artificial neuron

The human brain is made up of about one hundred billion neurons,

and while its structure and functions are highly complex

16



Neuron and artificial neuron

The human brain is made up of about one hundred billion neurons,
and while its structure and functions are highly complex

16



Neuron and artificial neuron

The basic unit that composes the brain is relatively simple.

17



Neuron

18



Neuron

19



Neuron

20



Neuron

21



Neuron as an information processor

We can think of a neuron as an information-processing unit with
three main functions: (1) input, (2) computation, and (3) output.

22



Connections between neurons

It connects to another neuron’s axon

23



Connections between neurons

It connects to another neuron’s axon through a synapse

24



Firing of a neuron

In the soma (cell body), if the incoming signals exceed a certain
threshold, the neuron fires an action potential.

25



Information transfer

It allows the neuron to transfer information to the next neuron.

26



Neurons to artificial neurons

Artificial neurons are designed to mimic the information-processing
mechanisms of biological neurons.

27



Neurons to artificial neurons

When combined, they form artificial neural networks. Then, let’s try
to understand how artificial neurons work.

28



Perceptron



Artificial neurons

29



Artificial neurons

30



Artificial neurons

This cell receives inputs from three neurons, calculates whether the
total input exceeds the threshold, and then produces an output.

31



Artificial neurons

Each neuron provides an input, denoted as 𝑥1, 𝑥2, 𝑥3.

32



Artificial neurons

Each input 𝑥1, 𝑥2, 𝑥3 is multiplied by a corresponding weight
𝑤1, 𝑤2, 𝑤3 before being combined.

33



Artificial neurons

The circular unit is called a node. It receives the inputs from neurons,
combines them with their weights, and calculates the node value.

34



Artificial neurons

This computed output is then passed on to the next neuron.

35



Artificial neurons

Now, let’s put in actual values and calculate the output.

36



Now, let’s put in actual values and calculate the output.

37



Now, let’s put in actual values and calculate the output.

38



Now, let’s put in actual values and calculate the output.

39



Now, let’s put in actual values and calculate the output.

40



Now, let’s put in actual values and calculate the output.

41



Now, let’s put in actual values and calculate the output.

42



Artificial neurons: activation function

Just like the soma decides whether to fire based on the threshold, an
artificial neuron computes a weighted sum of inputs and applies an
activation function.

43



Artificial neurons: activation function

An activation function is applied to the weighted sum of inputs to
determine the output. For simplicity, let’s assume a step function as the
activation function:

𝑓(𝑧) = {1 if 𝑧 ≥ 0.5
0 if 𝑧 < 0.5

44



Perceptrion

This is a basic structure of the perceptron.

45



Training perceptron

To train a perceptron, we compare the predicted output with the
actual output. The difference is the error, which is then used to
adjust the weights so that the model improves over time.

46



Training perceptron: Demo

Hands-on practice in Lab 3

47



Multi-layer perceptron



Limitation of a single-layer perceptron

A single-layer perceptron works well for linearly separable data. If
the data points can be divided by a single straight line in a 2D plane,
the perceptron can learn to adjust its weights to find that line and
separate the classes.

48



Limitation of a single-layer perceptron

However, a single-layer perceptron has clear limitations. It cannot
solve problems where the data is not linearly separable.

49



Introduction of an MLP

But if we allow multiple lines, there is a possibility to separate even
non-linear data. This idea leads us to the multi-layer perceptron
(MLP).

50



Introduction to an MLP

Let’s assume we are given data in a complex form like this.

51



Introduction to an MLP

With a single perceptron, linear separation is not possible.

52



Introduction to an MLP

But if we add more lines, it becomes possible to separate further.

53



Introduction to an MLP

By adding several lines, the separation becomes more feasible.

54



Introduction of an MLP

Four lines can be thought of as the outputs of four perceptrons.

55



Introduction of an MLP

If we then connect another perceptron that takes these four outputs
as its inputs, we can construct a multi-layer neural network capable
of non-linear separation.

56



Structure of an MLP

So the MLP we build here consists of an input layer

57



Structure of an MLP

a hidden layer

58



Structure of an MLP

and an output layer.

59



Structure of an MLP

As the number of layers increases, the model can handle more
complex data.

60



Structure of an MLP

When a network has many layers, we call it “deep.” This is where the
term deep learning comes from.

61



Structure of an MLP – Deep Learning

To understand how multilayer networks work, we need to look at a
few more changes.

62



More changes: Activation function

More complex activation functions are used. For example, the
sigmoid function we learned last time.

63



More: At-a-Glance Comparison

In fact, many more activation functions have been introduced.

• Sigmoid/Logistic

• tanh

• ReLU

• Leaky/Parametric ReLU

• Swish

• GELU – frequently used with Transformers (BERT, RoBERTa)

64



More: At-a-Glance Comparison

In fact, many more activation functions have been introduced.

• Sigmoid/Logistic

• tanh

• ReLU

• Leaky/Parametric ReLU

• Swish

• GELU – frequently used with Transformers (BERT, RoBERTa)

64



More: At-a-Glance Comparison

In fact, many more activation functions have been introduced.

• Sigmoid/Logistic

• tanh

• ReLU

• Leaky/Parametric ReLU

• Swish

• GELU – frequently used with Transformers (BERT, RoBERTa)

64



More: At-a-Glance Comparison

In fact, many more activation functions have been introduced.

• Sigmoid/Logistic

• tanh

• ReLU

• Leaky/Parametric ReLU

• Swish

• GELU – frequently used with Transformers (BERT, RoBERTa)

64



More: At-a-Glance Comparison

In fact, many more activation functions have been introduced.

• Sigmoid/Logistic

• tanh

• ReLU

• Leaky/Parametric ReLU

• Swish

• GELU – frequently used with Transformers (BERT, RoBERTa)

64



More: At-a-Glance Comparison

In fact, many more activation functions have been introduced.

• Sigmoid/Logistic

• tanh

• ReLU

• Leaky/Parametric ReLU

• Swish

• GELU – frequently used with Transformers (BERT, RoBERTa)

64



More changes: Optimization

To reduce errors in multilayer networks, methods like gradient
descent (also introduced last time) are used.

65



More changes: Optimization (Review from last class)

• Goal: Learn good word vectors by minimizing a loss function
𝐽(𝜃) (measures how wrong predictions are).

• Idea:
• Start from random initial values
• Compute the gradient of 𝐽(𝜃) (which tells us the slope)
• Move a small step in the opposite direction of the gradient
• Repeat many times until the loss becomes small

66



More changes: Backpropagation algorithm

A key algorithm in training neural networks is backpropagation.

67



Gradient descendant and loss
function



Gradient Descent: Definition

• Gradient descent is an optimization algorithm used in deep
learning.

• It minimizes a given loss function by updating model
parameters.

• Model parameters include:

• Weights – connection strengths between neurons
• Bias – shifts the activation function left or right to speed up
learning

68



Gradient Descent: Definition

• Gradient descent is an optimization algorithm used in deep
learning.

• It minimizes a given loss function by updating model
parameters.

• Model parameters include:

• Weights – connection strengths between neurons
• Bias – shifts the activation function left or right to speed up
learning

68



Gradient Descent: Definition

• Gradient descent is an optimization algorithm used in deep
learning.

• It minimizes a given loss function by updating model
parameters.

• Model parameters include:

• Weights – connection strengths between neurons
• Bias – shifts the activation function left or right to speed up
learning

68



Gradient Descent: Definition

• Gradient descent is an optimization algorithm used in deep
learning.

• It minimizes a given loss function by updating model
parameters.

• Model parameters include:
• Weights – connection strengths between neurons

• Bias – shifts the activation function left or right to speed up
learning

68



Gradient Descent: Definition

• Gradient descent is an optimization algorithm used in deep
learning.

• It minimizes a given loss function by updating model
parameters.

• Model parameters include:
• Weights – connection strengths between neurons
• Bias – shifts the activation function left or right to speed up
learning

68



Gradient Descent: Definition

• Model parameters include:
• Weights – connection strengths between neurons
• Bias – shifts the activation function left or right to speed up
learning

69



Gradient Descent: Definition

• Model parameters include:
• Weights – connection strengths between neurons
• Bias – shifts the activation function left or right to speed up
learning

70



Gradient Descent: Definition

• Model parameters include:
• Weights – connection strengths between neurons
• Bias – shifts the activation function left or right to speed up
learning

71



Gradient Descent: Definition

• Model parameters include:
• Weights – connection strengths between neurons
• Bias – shifts the activation function left or right to speed up
learning

72



Gradient Descent: Definition

• Model parameters include:
• Weights – connection strengths between neurons
• Bias – shifts the activation function left or right to speed up
learning

73



Gradient Descent: Definition

• Model parameters include:
• Weights – connection strengths between neurons
• Bias – shifts the activation function left or right to speed up
learning

74



Gradient Descent: Definition

• Gradient descent minimizes a given loss function by updating
model parameters.

75



Loss Function

• A loss function measures the difference between predicted
values and actual values.

76



Loss Function

• After training, if the relationship between the predictions and
the actual values changes like this, the error will likely decrease.

77



Loss Function

• A loss function measures the difference between predicted
values and actual values.

• Training a neural network means reducing this error step by step.
• Example: Mean Squared Error (MSE)

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

78



Loss Function: MSE

Even though it looks like a formula, the idea is very simple: the
difference between the actual value and the prediction.

79



Loss Function: MSE

To remove the effect of the sign, we square the difference.

80



Loss Function: MSE

Then, we add up the errors for all the data points.

81



Loss Function: MSE

Finally, we divide by the number of data points.

82



Loss Function

• Other common loss functions: Cross-Entropy (faster for
classification tasks, which also briefly mentioned in the last
class).

• Smaller loss values indicate better model performance.

83



Gradient Descent: Core Idea

Now that we understand the loss function, let’s think about how to
apply the gradient descent algorithm using MSE.

84



Gradient Descent: Core Idea

To make things simple, let’s first consider the case where we only
have one data point.

85



Gradient Descent: Core Idea

In this case, it reduces to a familiar quadratic equation.

86



Gradient Descent: Core Idea

If we plot this as a graph, it looks like this.

87



Gradient Descent: Core Idea

The point where the error is minimized is here.

88



Gradient Descent: Core Idea

At the minimum error, the slope of the curve is zero.

89



Gradient Descent: Core Idea

So the goal is to find the point where the tangent slope becomes
zero.

90



Gradient Descent: Core Idea

The method of gradually decreasing the slope of the tangent is what
we call gradient descent.

91



Gradient Descent: Core Idea

For a linear function, we can express the slope like this.

92



Gradient Descent: Core Idea

And by using derivatives, we can compute slopes even when the
curve is not a straight line.

93



Gradient Descent: Core Idea

With an infinitesimally small change in 𝑥, 𝑑𝑥,

94



Gradient Descent: Core Idea

and the corresponding infinitesimal change in 𝑦, 𝑑𝑦, we can calculate
the slope.

95



Gradient Descent: Core Idea

• The algorithm updates parameters by moving in the opposite
direction of the gradient.

• If slope is negative → increase the parameter value.

96



Gradient Descent: Core Idea

• The algorithm updates parameters by moving in the opposite
direction of the gradient.

• If slope is negative → increase the parameter value.

97



Gradient Descent: Core Idea

• The algorithm updates parameters by moving in the opposite
direction of the gradient.

• If slope is positive → decrease the parameter value.

98



Gradient Descent: Core Idea

• The algorithm updates parameters by moving in the opposite
direction of the gradient.

• If slope is positive → decrease the parameter value.

99



Gradient Descent: Core Idea

• Iteration continues until the slope converges to zero (minimum
loss).

100



Learning Rules

Perceptron learning rule:

𝑤new = 𝑤current + 𝜂 ⋅ 𝑥 ⋅ (𝑦 − ̂𝑦)

• 𝑤new: updated weight
• 𝑤current: current weight
• 𝜂: learning rate
• 𝑥: input value
• 𝑦: target (actual value)
• ̂𝑦: predicted value
• (𝑦 − ̂𝑦): error

Gradient descent learning rule:

𝑤new = 𝑤current − 𝜂 ⋅ 𝜕𝐿
𝜕𝑤

• 𝐿: loss function
• 𝜕𝐿

𝜕𝑤 : gradient of the loss function with respect to weight
101



Backpropagation



Now, we have learned everything we need to understand how
backpropagation works—something that can seem almost magical in
the way deep learning encodes languages into vector spaces.

102



Setup: Input Layer

To understand the core of the backpropagation algorithm, we
assume a simple multilayer neural network with two neurons in the
input layer.

103



Setup: Hidden Layer

The hidden layer contains two neurons.

104



Setup: Output Layer

The output layer has one neuron.

105



Simple Multilayer Neural Network

There are some weights.

106



Activation Function

The activation function is the sigmoid.

107



Loss Function

The loss function is Mean Squared Error (MSE).

108



Weight Initialization and Learning Rate

At the beginning, we suppose that all weights are initialized
randomly. The learning rate is set to 0.1.

109



Learning Process

1. Feedforward: compute outputs

2. Loss calculation: evaluate error

3. Backpropagation: propagate errors backward

The process of finding the best parameters is called learning (optimization).

110



Step 1: Feedforward

The first step is the feedforward stage.

111



Input Values

The inputs are given as follows.

112



Weighted Sum to Hidden Node (1)

Each input is multiplied by its connection weight, and the results are
summed into the hidden layer node.

113



Weighted Sum to Hidden Node (2)

Each input is multiplied by its connection weight, and the results are
summed into the hidden layer node.

114



Activation at Hidden Node

The activation function is applied to the hidden layer node.

calculator: https://www.tinkershop.net/ml/sigmoid_calculator.html

115

https://www.tinkershop.net/ml/sigmoid_calculator.html


Weighted Sum to Output Neuron

The weighted inputs are summed and passed into the output layer
neuron.

116



Final Output

The sigmoid function at the output layer produces the final output
value.

117



Feedforward Completed

The feedforward stage is now complete.

118



Step 2: Loss Calculation

The second step is the loss calculation stage.

119



Applying the Loss Function

Since we use MSE as the loss function, the output is substituted into
the MSE formula.

120



Single Output Neuron

Because there is only one output neuron, 𝑛 = 1.

121



Substituting the Output Value

The output value 0.645 is substituted into the MSE.

122



Assumed Target Value

Suppose the actual target value is 1.

123



Error Calculation

The error (C) is then calculated.

124



Step 3: Backpropagation

The third step is the backpropagation stage.

125



Updating Weight 𝑤5

Using backpropagation, we update the weight 𝑤5.

126



Weight Update Rule

Recall the weight update formula in gradient descent.

127



Derivative for 𝑤5

Therefore, to update 𝑤5, we need to compute the following derivative.

128



Using the Chain Rule

Since this derivative cannot be computed directly, we apply the chain
rule.

129



Chain Rule

The chain rule is the core of the backpropagation algorithm.

130



Unknown Relationship

When we want to compute the derivative of two variables but do not
know their direct relationship,

131



Expanding with Known Derivatives

we can expand the expression step by step using known partial
derivatives, solving the parts to obtain the overall derivative.

132



Eliminating Intermediate Variables

In this way, intermediate variables are eliminated, leaving only the
relationship we want to compute.

133



Chain Rule: An Analogy

How many times faster is the cheetah than the human?

I don’t know...

Now, you know:

• a cheetah is twice as fast as a lion,
• a lion is twice as fast as a bear,
• and a bear is 1.5 times faster than a human

How many times faster is the cheetah than the human?

134



Chain Rule: An Analogy

How many times faster is the cheetah than the human?
I don’t know...

Now, you know:

• a cheetah is twice as fast as a lion,
• a lion is twice as fast as a bear,
• and a bear is 1.5 times faster than a human

How many times faster is the cheetah than the human?

134



Chain Rule: An Analogy

How many times faster is the cheetah than the human?
I don’t know...

Now, you know:

• a cheetah is twice as fast as a lion,
• a lion is twice as fast as a bear,
• and a bear is 1.5 times faster than a human

How many times faster is the cheetah than the human?

134



Chain Rule: An Analogy

How many times faster is the cheetah than the human?
I don’t know...

Now, you know:

• a cheetah is twice as fast as a lion,
• a lion is twice as fast as a bear,
• and a bear is 1.5 times faster than a human

How many times faster is the cheetah than the human?

134



Breaking Down the Parts

Therefore, we calculate the value by computing each part step by
step.

135



First Derivative

First, we compute the first derivative.

136



Case of 𝑛 = 1

Since 𝑛 = 1,

137



Step-by-Step Calculation (1)

Proceeding step by step, we obtain:

138



Step-by-Step Calculation (2)

139



Step-by-Step Calculation (3)

140



Second Derivative

To compute the second derivative,

141



Sigmoid in Feedforward

Recall that we used the sigmoid function during feedforward.

142



Sigmoid Formula

The mathematical formula of the sigmoid function is as follows:

143



Using 𝑂 and 𝑍 Variables

When expressed with 𝑂 and 𝑍 variables, we obtain:

144



Derivative of Sigmoid

The derivative of the sigmoid function is:

145



Simplified Expression

It can also be expressed as:

146



Computing the Sigmoid Derivative

Since we already know the value of 𝑂1, we can compute the
derivative of the sigmoid.

147



Step-by-Step Expansion (1)

148



Step-by-Step Expansion (2)

149



Step-by-Step Expansion (3)

150



Third Term

For the third term, we compute:

151



Formula for 𝑧

Using the formula for 𝑧,

152



Partial Derivative of 𝑧3

Taking the partial derivative of 𝑧3 with respect to 𝑤5 directly gives ℎ1.

153



Value of ℎ1

From the feedforward calculation, ℎ1 = 0.615.

154



Substituting Values

Now, substituting the values, we obtain:

155



Gradient of the Loss Function

Finally, we can compute the gradient of the loss function.

156



Weight Update with Gradient Descent

According to the gradient descent learning rule:

𝑤new = 𝑤current − 𝜂 ⋅ 𝜕𝐿
𝜕𝑤

The new weight = 0.55 − (−0.1) ⋅ 0.1 = 0.56

157



Updating Weight 𝑤6

Now, let us update 𝑤6 as well.

158



Using the Chain Rule Again

By the chain rule, we can similarly derive the expression.

159



Same as 𝑤5 Formula

The previous steps are the same as for the 𝑤5 calculation.

160



Substituting Values

Now, substituting the values, we obtain:

161



Third Term

The third term once again becomes ℎ2.

162



Gradient for 𝑤6

The gradient of the loss function is −0.095.

163



Weight Update with Gradient Descent

According to the gradient descent learning rule:

𝑤new = 𝑤current − 𝜂 ⋅ 𝜕𝐿
𝜕𝑤

The new weight = 0.45 − (−0.095) ⋅ 0.1 = 0.4595

164



Other Weights

The remaining weights in the first layer are updated in the same way.

165



Checking Error After Backpropagation

Now, let us check whether the network error has decreased after
backpropagation.

166



Same Input Values

We feed in the same input values again.

167



Hidden Node 𝑧1

Weighted sums are passed into hidden node 𝑧1.

168



Hidden Node 𝑧2

Weighted sums are passed into hidden node 𝑧2.

169



Hidden Layer Activation

The activation function is applied at the hidden nodes.

170



Output Node Weighted Sum

The weighted inputs are summed at the output node.

171



Final Output

Finally, the sigmoid function at the output layer produces the final
output.

172



Loss Calculation (1)

The output value is substituted into the loss function.

173



Loss Calculation (2)

174



Error Comparison

Comparing with the previous error 𝐶 = 0.126, the error is reduced.

175



Training Process

After this, the same cycle of feedforward, loss calculation, and
backpropagation is repeated until the error reaches a minimum, at
which point training stops.

176



From Scalar Derivatives to Matrices

So far, we have considered the case of a single output, where the gradient
with respect to the weights is just a scalar derivative.

But when the function has multiple outputs, the derivative generalizes to a
matrix.

177



Jacobian Matrix (Just the Idea!)

• When the function has multiple outputs, the gradient becomes
a matrix.

• Jacobian matrix:

𝐽 = ⎡
⎢
⎣

𝜕𝑓1
𝜕𝑥1

… 𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

… 𝜕𝑓𝑚
𝜕𝑥𝑛

⎤
⎥
⎦

178



Why Learn About Gradients?

• Modern deep learning frameworks like PyTorch and TensorFlow
compute gradients for you!

• But knowing how gradients work helps you:
• Understand what’s going on under the hood
• Debug unexpected behavior
• Design better models and training routines

• Want to see this in action? Pytorch Tutorial

179



Wrap-up



Conclusion

• GloVe
• Artificial neural network
• Perceptrons
• MLP
• Gradient descendant and loss function
• Backpropagation

Key idea: Modern NLP systems are built on deep learning; deep
learning algorithm is not magic.

180


	Review
	Lesson plan
	GloVe
	Artificial neural network
	Perceptron
	Multi-layer perceptron
	Gradient descendant and loss function
	Backpropagation
	Wrap-up

